Home Cloud Deploying code from GitHub to AWS EC2 with CodePipeline

Deploying code from GitHub to AWS EC2 with CodePipeline

by Sean Ziegler

I’m not that old, but when I built my first website I manually copied code to an Apache server with FTP. That server was also running in my closet. This deployment process was not exactly full proof, and I experienced frequent outages on my website. Deployments have come a long way in the 10 years since my first website and the general goal today is to automate code deployments as much as possible. Let’s explore how we can deploy code from GitHub to EC2 using CodePipeline.

Why automate?

The more repeatable your deployments are, the less downtime you will have. Automated deployments are easier to test, easier to troubleshoot, lend themselves to scalability, can perform rollbacks on failure, support blue/green and canary deployments. The list goes on.

Ideally, you treat your servers like cattle, not like pets. If it gets sick, you shoot it and replace it with another one. Automated deployments make that easy.

First, a Git repo

Before we do anything else, we will need a Git repository to house the code. I’ll clone down an empty repo and create a demo file.

git clone git@github.com:seanziegler/AWSDeployDemo.git
touch demo.txt
echo "This is prod" > demo.txt
git add . 
git commit -m "Init commit"
git push origin master

I will create a separate branch so I can push separately to test and master.

git branch test
git checkout test
echo "This is test" > demo.txt 
git add .
git commit -m "Create test branch"
git push origin test

Obviously, you’d normally be deploying an application, not just a text file.

Creating deployment targets

Now that we have repositories set up, we need some instances. I will use the management interface since this is just a demo, but you can also use the awscli or Terraform/CloudFormation.

It’s best practice to create a new subnet inside your VPC for each application you deploy.

Creating a subnet (or multiple) for each application you deploy is an excellent way to keep things segmented and maintainable.

Okay, next up are the EC2 instances themselves. I will make two: one for test and one for production. Obviously this is just a dummy deployment, but CodePipeline is versatile enough to allow deployments across hundreds of resources if needed.

Don’t forget to put it in the subnet you created.

I’ll also add some tags to identify the production vs test instance. I’ll be using these later to tell CodePipeline which one is which.

There are several ways to identify resources but tags are quick and easy.

Okay, we have what we need for instances.

Two small test instances.

Installing the CodeDeploy agent

Before we can build a pipeline, we need to configure CodeDeploy and its agent. CodeDeploy requires a small agent daemon installed on every machine that is a deployment target.

You can check if you have the CodeDeploy agent installed by connecting to your instance and running (on Amazon Linux or RHEL):

sudo service codedeploy-agent status

You’ll either get an error or a message that the service is stopped. If the service is stopped run:

sudo service codedeploy-agent start

If you get an error, the codedeploy-agent isn’t installed. So it becomes more involved. Here’s the docs page on how to install the CodeDeploy agent. Essentially, it boils down to the following commands:

sudo yum update -y
sudo yum install ruby wget -y
cd /home/ec2-user
wget https://bucket-name.s3.region-identifier.amazonaws.com/latest/install
chmod +x ./install
sudo ./install auto

In the wget command above, you’ll need to replace both bucket-name and region-identifier with the values that corresponds to your region.

Region Namebucket-nameregion-identifier
US East (Ohio)aws-codedeploy-us-east-2us-east-2
US East (N. Virginia)aws-codedeploy-us-east-1us-east-1
US West (N. California)aws-codedeploy-us-west-1us-west-1
US West (Oregon)aws-codedeploy-us-west-2us-west-2
Canada (Central)aws-codedeploy-ca-central-1ca-central-1
Europe (Ireland)aws-codedeploy-eu-west-1eu-west-1
Europe (London)aws-codedeploy-eu-west-2eu-west-2
Europe (Paris)aws-codedeploy-eu-west-3eu-west-3

Once installed, check one last time to make sure the agent is running.

sudo service codedeploy-agent status

CodeDeploy Role

In order for CodeDeploy to work, we need to assign it a service role with the correct permissions. Let’s create a role with the AWSCodeDeployRole policy attached to it.

This role will allow CodeDeploy access to our resources.
Don’t forget to attach the role.

Now that the instance roles are setup, it’s time to turn to CodeDeploy.

Creating an Application and Deployment Group

Creating an application in CodeDeploy is straightforward. Just give it a name and tell it you plan on deploying code to EC2 instances.

Creating a deployment group is more complicated but not difficult. Give it a name and assign the CodeDeploy service role you created previously. This will allow CodeDeploy to access the resources specified in this deployment group.

Next, choose EC2 instances for deployment. You can also deploy to auto-scaling groups, but for now I’ll deploy to a single instance. Don’t forget to add the env:test tag. You should see one matched instance that corresponds to the test instance created earlier.

I had to add an extra tag called demo because I have some other instances with env:test. You likely won’t need the demo tag.

We don’t need a special deployment setting so just leave the default AllAtOnce setting in place. Uncheck Enable load balancing since we haven’t set that up.

Repeat this process again but target the instances with the env:prod tag.

appspec.yml

CodePipeline needs to know what to do with the files in your Git repository when you deploy. A file called appspec.yml is CodePipeline’s way of defining the tasks you want to run when deploying code. There’s too much to cover here, but AWS has examples of how to build out an appspec.yml file.

For this project, I’m just going to copy in some text files from the Git repo to test that the pipeline is working. You’ll need to do your own research on how to build an appspec file to suit your deployment. If you want to follow along with my dummy deployment, put this in a file at the root of your git repo. Don’t forget to name it appspec.yml!

version: 0.0
os: linux
files:
  - source: ./demo.txt
    destination: /

Building a pipeline

We need to build two pipelines for this to work. One pipeline that deploys the test branch to test instances and one pipeline that deploys the master branch to production instances.

Using two pipelines allows deployment to testing and production environments.

Creating a pipeline is a straightforward process. I suggest letting CodePipeline create your service role for you. It’s just easier that way.

Create a stage that uses your GitHub repository and the test branch as the source.

Skip the build stage for now. You can come back later and setup CodeBuild to do integration tests or build binaries if needed.

Select the CodeDeploy provider and choose the application and deployment group for your test instances.

Click next and deploy the pipeline. You’ll see it try to download your source and deploy it to your test instances.

All right, our deployment succeeded!

Great, we deployed to our test instances. But what about production?

UPDATE: It’s come to my attention, thanks to a helpful CodePipeline engineer who reached out, that my original method was not ideal. The article has been update to reflect his suggestions.

We need to set up a production pipeline next. Just repeat the process above, but this time from your master branch to your production instances.

Great, you should now have two deployment pipelines!

Perfect!

Now, let’s just check and see if the deployments worked. First, let’s check the test instance.

ssh ec2-user@test-instance

Last login: Sun Apr 26 16:00:02 2020 from <IP>

       __|  __|_  )
       _|  (     /   Amazon Linux 2 AMI
      ___|\___|___|

https://aws.amazon.com/amazon-linux-2/

[ec2-user@test-instance ~]$ cat /demo.txt
This is test

Next, check the production instance.

ssh ec2-user@prod-instance

Last login: Sun Apr 26 16:00:02 2020 from <IP>

       __|  __|_  )
       _|  (     /   Amazon Linux 2 AMI
      ___|\___|___|

https://aws.amazon.com/amazon-linux-2/

[ec2-user@prod-instance ~]$ cat /demo.txt
This is prod

Awesome! Just what we expected. Your pipeline is set up and ready to go. Any time you push to test or master with Git, your code will deploy to the correct instances according to whatever you have defined in your appspec.yml file.

Customizing the deployment.

There are several ways you can customize your pipeline.

appspec.yml

You’ll want to start with building out an appspec.yml file that reflects the structure of your application. Copy over all the files you need, run scripts to set up dependencies, etc.

AMI

Make a custom AMI for the instances in each of your group. Include any dependencies your code needs to run (and the codedeploy-agent) in the AMI rather than installing it every deployment. This will increase the reliability and speed of your deployments.

Auto-scaling groups

Instead of creating deployment groups with specific EC2 instances identified, consider deploying to auto-scaling groups instead so you can apply scale-in and scale-out rules.

Conclusion

You’re all set to deploy code from GitHub to EC2. This is just an introductory guide, from here, there are an almost infinite amount of possibilities for expanding your infrastructure.

You may also like

1 comment

How to build a free static resume site with AWS S3, Cloudfront, and Route 53 - Sean Ziegler May 12, 2020 - 1:15 PM

[…] Posts How to build a free static resume site… Deploying code from GitHub to AWS EC2 with… How to run Jira on a Raspberry Pi… How to use the Linux Access Control Table… Important […]

Reply

Leave a comment

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept